Sugar-powered biobattery has 10 times the energy storage of lithium

enzymatic fuel cell iko

As you probably know, from sucking down cans of Coke and masticating on candy, sugar — glucose, fructose, sucrose, dextrose — is an excellent source of energy. Biologically speaking, sugar molecules are energy-dense, easy to transport, and cheap to digest. There is a reason why almost every living cell on Earth generates its energy (ATP) from glucose.


Now, researchers at Virginia Tech have successfully created a sugar-powered fuel cell that has an energy storage density of 596 amp-hours per kilo — or “one order of magnitude” higher than lithium-ion batteries. This fuel cell is refillable with a solution of maltodextrin, and its only by products are electricity and water.

enzymatic-fuel-cell
enzymatic-fuel-cell

Now, it’s not exactly news that sugar is an excellent energy source. As a culture we’ve probably known about it since before we were Homo sapiens. The problem is, unless you’re a living organism or some kind of incendiary device, extracting that energy is difficult. In nature, an enzymatic pathway is used — a production line of tailor-made enzymes that meddle with the glucose molecules until they become ATP. Because it’s easy enough to produce enzymes in large quantities, researchers have tried to create fuel cells that use artificial “metabolism” to break down glucose into electricity (biobatteries), but it has historically proven very hard to find the right pathway for maximum efficiency and to keep the enzymes in the right place over a long period of time.

The Virginia Tech biobattery uses 13 enzymes, plus air (it’s an air-breathing biobattery), to produce nearly 24 electrons from a single glucose unit. This equates to a power output of 0.8 mW/cm, current density of 6 mA/cm, and energy storage density of 596 Ah/kg. This last figure is impressive, at roughly 10 times the energy density of the lithium-ion batteries in your mobile devices. [Research paper: doi:10.1038/ncomms4026 – “A high-energy-density sugar biobattery based on a synthetic enzymatic pathway”]

read more : http://www.extremetech.com